Error Bounds for the Gauss-Chebyshev Quadrature Formula of the Closed Type

By M. M. Chawla

1. Introduction. We are concerned with the Gauss-Chebyshev quadrature formula of the closed type,

$$
\begin{equation*}
\int_{-1}^{1}\left(1-t^{2}\right)^{-1 / 2} f(t) d t=\sum_{k=0}^{n} A_{k} f\left(t_{k}\right)+E_{n}(f) \quad(n \geqq 2) \tag{1}
\end{equation*}
$$

with the abscissas

$$
t_{k}=\cos (k \pi / n), \quad k=0, \cdots, n
$$

and the Christoffel numbers

$$
A_{0}=A_{n}=\pi / 2 n, \quad A_{k}=\pi / n, \quad k=1, \cdots, n-1 .
$$

The quadrature formula (1) is exact for all polynomials of degree $\leqq 2 n-1$. For a general discussion of the Gauss formulas of the closed type, see Krylov [1, Chapter 9].

The usual real-variable theory estimate for the error $E_{n}(f)$ is given (Krylov [1, p. 171]) in terms of derivatives of f :

$$
\begin{equation*}
E_{n}(f)=-\frac{\pi}{2^{2 n-1}} \frac{f^{(2 n)}(n)}{(2 n)!} \tag{2}
\end{equation*}
$$

for some $\eta \in[-1,1]$. The error expression (2) is valid for the class of functions which are $2 n$-times differentiable. In most cases, the exact value of η will be unknown, and the estimate $\max _{-1 \leq t \leq 1}\left|f^{(2 n)}(t)\right|$ is used. But in many cases it will be far from convenient to obtain $f^{(2 n)}$ or the bounds on it.

In the following, we use the complex-variable method to obtain a contour integral representation for $E_{n}(f)$, applied to analytic functions, and give bounds for the error in terms of the size of the integrand in the complex plane.
2. Error Bounds. Let $f(t)$ be analytic on $[-1,1]$, then it can be continued analytically so as to be single-valued and analytic in a domain D of the z-plane containing the interval $[-1,1]$ in its interior.

Let C be a closed contour in D_{4} enclosing the interval $[-1,1]$ in its interior and let $U_{n-1}=2^{n-1} \prod_{k=1}^{n-1}\left(t-t_{k}\right)$ be the Chebyshev polynomial of the second kind. On applying the residue theorem to the contour integral

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{w(z)}, \quad w(t)=\left(t^{2}-1\right) U_{n-1}(t) \tag{3}
\end{equation*}
$$

we get

[^0]$$
f(t)=\sum_{k=0}^{n} \frac{w(t)}{\left(t-t_{k}\right) w^{\prime}\left(t_{k}\right)} f\left(t_{k}\right)+\frac{1}{2 \pi i} \int_{C} \frac{w(t) f(z)}{w(z)} d z
$$

Multiplying (4) by the weight ($\left.1-t^{2}\right)^{-1 / 2}$ and integrating on $[-1,1]$, there results the quadrature formula (1), with the error

$$
\begin{equation*}
E_{n}(f)=\frac{i}{\pi} \int_{C} \frac{Q_{n-1}^{*}(z) f(z) d z}{U_{n-1}(z)\left(z^{2}-1\right)} \tag{5}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
Q_{n}^{*}(z)=\frac{1}{2} \int_{-1}^{1}\left(1-t^{2}\right)^{1 / 2} \frac{U_{n}(t)}{z-t} d t \tag{6}
\end{equation*}
$$

In a recent paper (Chawla [2]), the following result was proved. For sufficiently large $|z|$,

$$
\begin{equation*}
\left|\frac{Q_{n}^{*}(z)}{U_{n}(z)}\right| \leqq \frac{\pi}{2^{2 n+2}}|z|^{-2 n-1} \tag{7}
\end{equation*}
$$

Taking $C:|z|=R$ with sufficiently large R, from (5) and (7), we find

$$
\begin{equation*}
\left|E_{n}(f)\right| \leqq \frac{\pi}{2^{2 n-1}} \frac{R^{2} M(R)}{\left(R^{2}-1\right) R^{2 n}} \tag{8}
\end{equation*}
$$

where $M(R)=\max _{|z|=R}|f(z)|$.
These error bounds are simple to obtain and they will not be unduly pessimistic, but are valid for the class of functions which are continuable analytically in a sufficiently large domain of the z-plane containing the range of integration $[-1,1]$.

We obtain next estimates for $E_{n}(f)$ for all functions analytic on [$\left.-1,1\right]$. For this purpose, we introduce the ellipse $\varepsilon_{\rho}(\rho>1)$ defined by

$$
\begin{equation*}
z=\frac{1}{2}\left(\xi+\xi^{-1}\right), \quad \xi=\rho e^{i \theta} \quad(0 \leqq \theta \leqq 2 \pi) \tag{9}
\end{equation*}
$$

with foci at $z= \pm 1$ and semiaxes $\frac{1}{2}\left(\rho+\rho^{-1}\right)$ and $\frac{1}{2}\left(\rho-\rho^{-1}\right)$.
Let $f(t)$ be analytic on $[-1,1]$. Then, for some $\rho>1, f$ can be continued analytically into the closure of an ellipse \mathcal{E}_{ρ}. It has been proved (Chawla [2]) that for z on \mathcal{E}_{ρ},

$$
\begin{equation*}
Q_{n}^{*}(z)=(\pi / 2) \xi^{-n-1} . \tag{10}
\end{equation*}
$$

Since on ε_{ρ},

$$
\begin{equation*}
U_{n}(z)=\left(\xi^{n+1}-\xi^{-n-1}\right) /\left(\xi-\xi^{-1}\right) \tag{11}
\end{equation*}
$$

and by virtue of (10), (5) becomes

$$
\begin{equation*}
E_{n}(f)=i \int_{|\xi|=\rho} \frac{f\left[\frac{1}{2}\left(\xi+\xi^{-1}\right)\right] d \xi}{\xi\left(\xi^{\xi^{n}}-1\right)} \tag{12}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
E_{n}(f)=i \int_{\varepsilon_{\rho}} \frac{f(z) d z}{\left(z^{2}-1\right)^{1 / 2}\left[\left(z \pm\left(z^{2}-1\right)^{1 / 2}\right)^{2 n}-1\right]} \tag{13}
\end{equation*}
$$

where the sign in the integrand is chosen so that $\left|z \pm\left(z^{2}-1\right)^{1 / 2}\right|>1$. From (12). follows the following estimate for the error:

$$
\begin{equation*}
\left|E_{n}(f)\right| \leqq 2 \pi M(\rho) /\left(\rho^{2 n}-1\right) \tag{14}
\end{equation*}
$$

where $M(\rho)=\max |f|$ on $|\xi|=\rho$.
By experimenting with various "admissible" ρ, a conservative upper bound can be established. A similar remark applies to the estimate (8).
3. Example. Consider the estimation of error in the evaluation of the integral

$$
J=\int_{-1}^{1}\left(1-t^{2}\right)^{-1 / 2} \frac{a t}{4+t}=\frac{\pi}{(15)^{1 / 2}} \doteq 0.811155735192
$$

by the quadrature formula (1). For $n=4$, the approximate value found by the quadrature formula is $\doteq 0.811155845096$. Thus, the true error $E_{4} \doteq-0.0000001099$.

In this case, the real-variable estimate (2) gives $\left|E_{4}\right| \leqq 0.0000012$.
Taking $R=3.5$, the estimate (8) gives $\left|E_{4}\right| \leqq 0.0000023$.
However, evaluating the contour integral in (13), we find

$$
E_{4}=-\frac{2 \pi}{(15)^{1 / 2}\left[\left(4+(15)^{1 / 2}\right)^{8}-1\right]} \doteq-0.0000001099
$$

which is the exact error.

Department of Mathematics
Indian Institute of Technology
Hauz Khas, New Delhi-29
India

1. V. I. Krylov, Approximate Calculation of Integrals, Macmillan, New York, 1962. MR 26 \#2008.
2. M. M. Chawla, "On the Chebyshev polynomials of the second kind," SIAM Rev., v. 9, 1967, p. 729.

[^0]: Received February 13, 1967.

